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Abstract. We study the two-dimensional (2D) classical Lorentz model in a transverse magnetic
and an in-plane electric field, in the regime where the dimensionless electric field is smaller
than all other parameters. Since, therefore, the dimensionless density must be kept finite, we
start from the Liouville equation and derive, by the multiple time scale method, the equations
governing nonlinear as well as linear transport. The same diffusion tensor, formally rederived as
the Kubo expression is, surprisingly, found to govern both regimes, albeit in different manner.
Subsequently, explicit asymptotic results for the two components of the current density are
calculated in the low-density regime.

1. Introduction

The classical Lorentz model [1] has now been studied for over 90 years. In this model
non-interacting point particles (‘electrons’ with charge−e) move in a random array of
stationary scatterers of short range. Despite its long history, this seemingly simple model
continues to reveal unexpected properties. In particular, it was recently realized [2] that
in two dimensions (2D), and in a transverse magnetic fieldB, the Boltzmann equation
is not the correct kinetic equation for the Lorentz model, even in the Grad limit [3].
In this limit the number density of the scatterers,n → ∞, while their radius,a → 0,
in such a way that the mean-free path,3, stays constant, and the dimensionless density
η = na2 → 0. In the Grad limit the 2D Lorentz model in a magnetic field is governed by a
generalizedBoltzmann equation, with a collision operator that is local in space, but with an
interesting non-Markovian structure. Moreover, it was pointed out in [2] that qualitatively
new problems arise if an in-plane electric field is added.

On the other hand, the Lorentz model in an electric fieldE , with no magnetic field
present was, on the basis of the Boltzmann equation, thoroughly studied some time ago
[4, 5]. Its properties are interesting. A weak electric field will, after an initial transient
described by kinetic theory, for a sizeable time interval distort the initial equilibrium
distribution and generate a current density in the manner predicted by linear response
theory. On this time scale, standard linear results (Ohm’s law) are valid. However, since
the model contains no dissipative mechanism, and since the particles preferentially move
in the direction favoured by the electric field, the energy of the charged particles will, on
a longer time scale, slowly grow. The time dependence of this process was examined in
[4, 5]. Asymptotically, the current was found to be proportional toE1/3, and to decay
as t−1/3.
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The present paper contains the first study of the 2D Lorentz model in whichboth
fields are present, a transverse magnetic, and an in-plane electric field. We do not discuss
its properties for arbitrary field strengths and densities here. The model is expected to
behave quite differently, depending on the magnitude chosen for the various dimensionless
parameters. In particular, it was argued in [2] that in a transverseB-field, the diffusion
tensor is singular as theE → 0 in the Grad limit. In this paper we focus on the regime
in which the dimensionless electric field is small with respect toall other parameters. As
a consequence we cannot, in principle, take the Grad limit from the start, but must let the
dimensionless density be finite. The only reliable basis from which to proceed, under these
circumstances, is the Liouville equation or, equivalently, the hierarchy.

Here we choose to start from the Liouville equation. From this most fundamental of
starting points, we shall primarily be interested in the ‘hydrodynamic’ time scale(s), on
which there is macroscopic transport, linear and nonlinear. The multiple time scale method
is particularly well suited to a systematic study of problems of this sort. This method can
be traced back to work by Krylov and Bogolyubov in the 1930s [6]. A particularly clear
account of the method can be found in [7], and its relevance for classical kinetic theory is
discussed in [8]. It has already been applied by one of the authors to the Lorentz model
in an electric field [9]. We shall adopt this subtle and efficient method here, and keep our
discussion general. The emphasis on systematics and generality will pay off, as we shall
see.

The initial transient (on what we shall call theτ0-scale) from the equilibrium distribution
at t = 0 can only be described in detail by kinetic theory. Since the dimensionless density
of scatterers is taken to befinite, the systematic construction of such a theory is a formidable
task [10], and we shall bypass it here. The next time scale (theτ1-scale) is that of linear
response. Finally, the energy of the moving particles will, on average, grow in time (on
the τ2-scale). With our fundamental starting point, we derive the ‘hydrodynamic’ equations
governing the last two time scales, including exact formal expressions for the appropriate
transport coefficients. It should come as no surprise that, on theτ1-scale, we rederive
the Kubo formula for the diffusion tensor, and the Nernst–Einstein relation by which the
conductivity tensor follows. What is less obvious is that it is thesamediffusion tensor which
governs, albeit in a different manner, nonlinear transport on theτ2-scale. This fundamental
result, found because we insisted on a general approach has, to our knowledge, not been
noticed before.

Nevertheless, we shall see in retrospect that the diffusion equation on the energy axis,
from which the nonlinear role of the diffusion tensor follows, can be found directly by a
simple physical argument.

In order to provide a concrete illustration of our general results, we use the diffusion
tensor given by the generalized Boltzmann equation as an approximate representation of
the true diffusion tensor at small, but finite, dimensionless densities. We calculate the
current densities on the hydrodynamic time scales, in particular the initial and the asymptotic
behaviour for long times. Since, asymptotically, the magnetic field is effectively turned off,
we can make contact with the previously found asymptotic results [4, 5], mentioned above.
In addition, the asymptotic behaviour of the current density transverse to the electric field
is calculated.

We have organized the paper as follows: After some basic material has been presented
in section 2, we carry out the multiple time scale analysis in section 3, with some details
relegated to the appendix. General results for linear and nonlinear transport are presented
in section 4. Explicit low-density results are discussed in section 5, and concluding remarks
constitute section 6.
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2. Basics

For simplicity, all calculations will be made for hard disc scatterers with radiusa. As will
become clear, some of our basic results should be valid for more general models. It is
convenient already from the beginning to introduce dimensionless variables. Lengths will
be scaled by the mean-free path3 = (2na)−1, time by the (inverse) cyclotron frequency
ω = eB/m (with e the elementary charge), and velocities by the speedv0. This speed
could be a given initial speed of the electron, or it could be one characterizing an initial
distribution, e.g., the Maxwell distribution which would givev0 = √

2kBT/m, with T the
absolute temperature. In other words, we write

r = 3x position of the electron

Ri = 3Xi position of scattereri, i = 1, 2, . . . , N
t = ω−1τ time

v = v0u velocity of the electron.

(1)

In addition, we introduce the dimensionless ratios

η = a/(23) = na2 dimensionless number density of scatterers

ε = vd/v0 = (E/B)/v0 ratio of drift velocity tov0

α = v0/(ω3) = Rc/3 ratio of initial cyclotron radius to3.

(2)

The joint distribution of one moving electron andN hard disc scatterers we write
in scaled variables asρ(e, 1, . . . , N; τ), where e ≡ (x,u) = (x, u, φ) specifies the
dynamic state of the electron ((u, φ) are the polar coordinates of the velocity), and
(1, . . . , N) ≡ (X1, . . . ,XN) the positions of the scatterers. The normalization is∫

de d1· · · dN ρ(e,1, . . . , N; τ) = 1. In terms of these variables the Liouville equation
reads[
∂

∂τ
+ αu · ∂

∂x
+ ∂

∂φ
− εÊ · ∂

∂u

]
ρ(e, 1, . . . , N; τ)

= 2αη
N∑
j=1

T (e, j)ρ(e,1, . . . , N; τ) (3)

whereT (e, j) is the binary collision operator involving scattererj :

T (e, j) = u

∫
dσ̂ (σ̂ · û)[θ(σ̂ · û)bσ̂ + θ(−σ̂ · û)]δ(x − Xj − 2ησ̂ )

bσ̂ χ(u) = χ
(
u − 2(σ̂ · u)σ̂

)
.

(4)

Hereδ(·) andθ(·) are the Dirac delta and unit step functions, respectively. Unit vectors are
distinguished by a hat,̂σ is the unit vector from the centre of the scatterer in the direction
of the point of collision, and

∫
dσ̂ denotes the angular integral.

Before proceeding, note the following identity which, physically, corresponds to particle
conservation: ∫

dû T (e, j)F (e) = 0 (5)

with F(e) an arbitrary function ofe = (x,u). The proof is straightforward. Insert (4)
into (5). Change variableu → w = u − 2(σ̂ · u)σ̂ , in the first (gain) term, and use that
σ̂ · û = −σ̂ · ŵ. This shows that the integrated gain term equals the integrated loss term
for arbitraryF(e), and the identity (5) follows immediately.
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From here on we choose, for simplicity, the distribution of the scatterers to be completely
random, i.e. with no penalty for overlaps. This is not in conflict with the fact that, with
respect to the electron, the scatterers act as hard discs. Incorporating this feature into the
initial distribution ρ(e, 1, . . . , N; 0), we write

ρ(e, 1, . . . , N; 0) = f (e; 0)
N∏
j=1

[
θ(|x − Xj | − 2η)

A− 4πη2

]
(6)

where f (e; τ) is the reduced distribution function for the electron, andA is the total
area of the system on the scale of32. Basically, it is the time evolution of the
electron distribution function that we are interested in, so we integrate the Liouville
equation over the positions of all the scatterers, and go to the thermodynamic limit, lim∞:
N → ∞, A → ∞, N/A = n32 = (4η)−1 = constant. We then arrive at the equation[
∂

∂τ
+ αu · ∂

∂x
+ ∂

∂φ
− εÊ · ∂

∂u

]
f (e; τ)

= 2ηα lim∞ N

∫
d1· · · dN T (e,1)ρ(e, 1, . . . , N; τ). (7)

This equation depends on the three dimensionless variablesε, ρ, andα. In a spatially
homogeneous setting, to which we shall specialize shortly, the two last ones appear as
a product only. We are primarily interested in studying the behaviour of the system in
various electric field regimes and, typically, withη � 1, i.e. close to the Grad limit, defined
as n → ∞, a → 0, 2na = 3−1 = constant. The simplest regime is that in whichε is
considered small compared with every other parameter. Physically, this corresponds to
the regime where the electric field is sufficiently weak that the drift during one cyclotron
revolution is much smaller than the radius of the scatterer,(2π/ω)(E/B) � a. This is the
regime which we study by the multiple time scale technique in the following section.

3. The multiple time scale technique

In the multiple time scale technique one replaces the single time variableτ by a set of
timesτ0, τ1, τ2, . . ., which in the distributionf ε(e; τ0, τ1, τ2, . . .) are treated as independent
variables. Similarly, the derivative with respect toτ is expanded as

∂

∂τ
−→ ∂

∂τ0
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
+ · · · . (8)

The physical subspace in this multidimensional extension is theline defined by

τ0 = τ ; τ1 = ετ ; τ2 = ε2τ ; . . . (9)

so that

f (e; τ) = f ε(e; τ, ετ, ε2τ, . . .). (10)

The advantage of this extension to multiple time space is that when we expand amplitudes
in standard fashion, say,

f ε(e; τ0, τ1, . . .) = f (0)(e; τ0, τ1, . . .)+ εf (1)(e; τ0, τ1, . . .)+ · · · (11)

we now have the freedom torequire that each term in the amplitude expansion remains
finite on every time scale. In this way we remove secular divergences and can let any
τi → ∞ with impunity. So far these statements constitute nothing but an optimistic general
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program. It remains to show that the program actually works in our context. Note that the
expansion (11) results from integration of the analogous expansion

ρε(e, 1, . . . , N; τ0, τ1, . . .)

= ρ(0)(e, 1, . . . , N; τ0, τ1, . . .)+ ερ(1)(e, 1, . . . , N; τ0, τ1, . . .)+ · · · (12)

over the positions of the scatterers.

3.1. Zeroth order

From now on we restrict the analysis to the spatially homogeneous case. We therefore
write f (e; τ) = f (u; τ)/A, with normalization

∫
du f (u; τ) = 1. The electric field is

turned on att = 0. It is convenient to choose the state att = 0 to be an equilibrium state
in the magnetic field. As a consequence,f (u; 0) is assumed to be rotationally invariant.
Any distribution with this property is an equilibrium one-particle distribution for a spatially
homogeneous Lorentz model in a magnetic field. With these stipulations, and to zeroth
order inε, equation (7) reduces to[
∂

∂τ0
+ ∂

∂φ

]
f (0)(u; τ0, τ1, . . .)

= 2αη lim∞ N

∫
dx

∫
d1· · · dN T (e,1)ρ(0)(e, 1, . . . , N; τ0, τ1, . . .). (13)

We adopt the convention that theentire initial conditionρ(e, 1, . . . , N; τ = 0) is carried
by the zeroth-order termρ(0)(e, 1, . . . , N; τ0 = 0, τ1 = 0, . . .). Introduce the operator
P = (2π)−1

∫
dφ which, acting on any function of u, projects out the rotationally invariant

part. From the identity (5) one concludes thatP acting on (13) gives∂Pf (0)/∂τ0 = 0.
We also need a statement on the dependence of the complementQf (0) = (1 − P)f (0)

on τ0. It is then convenient to return to the zeroth-order Liouville equation, which reads[
∂

∂τ0
+ αu · ∂

∂x
+ ∂

∂φ

]
ρ(0)(e, 1, . . . , N; τ0, τ1, . . .)

= 2αη
N∑
j=1

T (e, j)ρ(0)(e, 1, . . . , N; τ0, τ1, . . .). (14)

The physical initial state, withf (x,u; 0) = f (u; 0)/A, follows from (6) as

ρ(e, 1, . . . , N; 0) = f (u; 0)

A

N∏
j=1

θ(|x − Xj | − 2η)

A− 4πη2
. (15)

With the choice (15),f is clearly rotationally invariant initially. The question we face
is whether collisions can break this invariance. For an arbitrary initial state, they can†.
However, with the initial state (15) chosen here, the evolution inτ0, governed by (14),
leavesρ(0) rotationally invariant. The reason is the following one. The zeroth-order
Liouville equation (14) contains no electric field. In that context, the initial state is an
equilibrium state: It is rotationally invariant in velocity space. In addition, the(N + 1)-
particle density isconstantfor all configurations, except the forbidden ones, in which the

† This can be illustrated by the following example. Let all scatterers be distributed in the right half-plane, but
with the moving particle initially in the left half-plane. Clearly, an initially isotropic velocity distribution will, in
this case, develop into a non-isotropic one as a result of collisions.
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electron overlaps with at least one scatterer (the scatterers, on the other hand, are allowed
mutually to overlap freely). In particular, the density is independent of the location of the
electron relative to the external boundary of the system. Thus, with the initial state being
an equilibrium distribution with respect to the zeroth-order Hamiltonian, we conclude that
ρ(0), at τ1 = τ2 = · · · = 0, must be independent† of τ0. With the physical initial state (15)
as initial data forρ(0), we have then shown that, for arbitraryτ0,

ρ(0)(e, 1, . . . , N; τ1 = 0, τ2 = 0, . . .) = f (u; 0)

A

N∏
j=1

θ(|x − Xj | − 2η)

A− 4πη2
. (16)

In order to generalize (16) to arbitraryτi, i 6= 0, we now use the requirement that
no secular divergences should appear in our expansion. In particular,ρ(0) should be well
defined asτ0 → ∞. This implies that

lim
τ0→∞

∂

∂τ0
ρ(0)(e, 1, . . . , N; τ0, τ1, . . .) = 0. (17)

As a result, equation (14) gives[
αu · ∂

∂x
+ ∂

∂φ
− 2αη

N∑
j=1

T (e, j)

]
ρ(0)(e, 1, . . . , N; ∞, τ1, . . .) = 0 (18)

which demonstrates thatρ(0)(e, 1, . . . , N; ∞, τ1, . . .) is anequilibrium state. The converse
of the argument given after (15) then shows that this state must have been an equilibrium
state forall τ0. That is, for arbitraryτi, i 6= 0, the state must be of the form

ρ(0)(e, 1, . . . , N; τ1, τ2, . . .) = f (0)(u; τ1, τ2, . . .)

A

N∏
j=1

θ(|x − Xj | − 2η)

A− 4πη2
(19)

with f (0)(u; τ1, τ2, . . .) being some rotationally invariant function satisfying the condition
f (0)(u; 0, 0, . . .) = f (u; 0). This state, then, we adopt as the zeroth-order(N + 1)-particle
density in our multiple time scale scheme. It provides a stationary solution to the zeroth-
order Liouville equation (14), with initial condition consistent with (15).

From the independence ofρ(0) on τ0, we immediately conclude that, forarbitrary
τ1, τ2, . . .,

∂f (0)

∂τ0
= 0. (20)

3.2. First order

To first order the Liouville equation becomes(
∂

∂τ1
− Ê · ∂

∂u

)
ρ(0) +

(
∂

∂τ0
+ αu · ∂

∂x
+ ∂

∂φ

)
ρ(1) = 2αη

N∑
j=1

T (e, j)ρ(1). (21)

Integration and passage to the thermodynamic limit in the spatially homogeneous case gives
the corresponding equation forf (1):(
∂

∂τ1
− Ê · û ∂

∂u

)
f (0)(u; τ1, τ2, . . .)+

(
∂

∂τ0
+ ∂

∂φ

)
f (1)(u; τ0, τ1, . . .)

= 2αη lim∞ N

∫
dx

∫
d1· · · dN T (e,1)ρ(1)(e, 1, . . . , N; τ0, τ1, . . .). (22)

† This can also be shown by a direct, but somewhat technical, calculation based on (14) with initial state (15).
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Now act on (22) with the projection operatorP . In view of the identity (5), this causes the
right-hand side to vanish. On the left-hand side, only(∂/∂τ1)f

(0) and(∂/∂τ0)f
(1) survive,

in principle, the projection. However, if(∂/∂τ1)f
(0) were finite, this would cause a secular

divergence inPf (1) asτ0 → ∞. We require that such secular divergences do not exist and,
accordingly, we insist thatf (0) also remains constant on theτ1 time scale. Thus we have

f (0) = f (0)(u; τ2, τ3, . . .) Pf (1) = Pf (1)(u; τ1, τ2, . . .). (23)

Note that it isonly the angular average off (1) which has been shown to be independent
of τ0.

However, we can go further. Sincef (0) is independent of bothτ0 andτ1, equation (20)
shows that the same applies toρ(0). Equation (21) governsρ(1). The inhomogeneous term
is Ê · û(∂/∂u)ρ(0), which is a constant on theτ1 as well as on theτ0 scale. Moreover, the
initial condition isρ(1) = 0, since it isρ(0) that carries the entire initial condition. Thus,
there is noτ1 dependence anywhere in the equation governingρ(1) and, consequently,f (1)

must beindependentof τ1. Nevertheless,ρ(1) andf (1) do depend onτ0.
It is the asymmetric termf (1) that carries the current, and the constant current on the

τ1-scale is that characteristic of the linear transport regime.

3.3. Second order

We shall now demonstrate that, to second order, we get a closed equation forf (0) on the
τ2-scale. Sincef (0) is a constant on theτ0- andτ1-scales, the true initial state should also
be used as initial data for this closed equation on theτ2-scale. Having determinedf (0), one
can easily calculatef (1), from which the current follows on all three time scales.

To second order the Liouville equation reads

∂ρ(0)

∂τ2
− Ê · ∂ρ

(1)

∂u
+

(
∂

∂τ0
+ αu · ∂

∂x
+ ∂

∂φ

)
ρ(2) = 2αρ

N∑
j=1

T (e, j)ρ(2) (24)

where we used the fact thatρ(1) is independent ofτ1. Once again, integrate overx, 1, . . . , N
and act with the projectorP on (24) to get (use equation (5) and, furthermore, remember
that f (0) is rotationally invariant!):

∂f (0)

∂τ2
− P

(
Ê · ∂

∂u
Qf (1)

)
+ ∂Pf (2)

∂τ0
= 0. (25)

Here we used the assumption of spatial homogeneity, and the fact that only the complement
of Pf (1), namelyQf (1) ≡ (1 − P)f (1), survives the final averaging in the second term.
The requirement thatf (2) contain no secular terms whenτ0 → ∞ amounts to setting
limτ0→∞(∂/∂τ0)Pf

(2) = 0 in (25). Thus

∂f (0)

∂τ2
= lim

τ0→∞P
(

Ê · ∂

∂u
Qf (1)

)
. (26)

In order to make this a closed equation forf (0) on theτ2-scale, we need the formal solution
for f (1) on the τ0-scale, in the limitτ0 → ∞. The details involved in constructing this
formal solution are a distraction from the multiple time scale line of thought and are,
therefore, relegated to the appendix. The final result is thatf (0)(u) obeys the equation

∂f (0)(u, τ2)

∂τ2
= 1

u

∂

∂u
D1(u)

1

u

∂

∂u
f (0)(u, τ2). (27)

HereD1 = (ω/v2
0)D1 is the dimensionless, energy-dependent, diagonal part of the diffusion

tensor (D1 = Dxx = Dyy) or, in common terminology, the diffusion ‘constant’.
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4. Linear and nonlinear transport in the general Lorentz model

4.1. The diffusion equation

Introduction of the dimensionless kinetic energy,K = 1
2u

2, reduces (27) to the standard
diffusion equation

∂f (0)(K, τ2)

∂τ2
= ∂

∂KD1(K)∂f
(0)(K, τ2)

∂K . (28)

The relationship becomes even more transparent when one returns to the original physical
variables

τ2 = ε2τ =
( E

Bv0

)2
eB
m
t D1 = eB

mv2
0

D1 K = 1

2
u2 = v2

2v2
0

= K

mv2
0

(29)

with the result, when superscripts on the distribution function are deleted,

∂f (K, t)

∂t
= (eE)2 ∂

∂K
D1(K)

∂f (K, t)

∂K
. (30)

Before discussing this equation we note that, in retrospect, we could have written it
down directly, based on a physical argument at the phenomenological level. Let the initial
state be one with kinetic energyK = K0 = 1

2mv
2
0, and with precisely given positiony = y0

on they-axis, along which the electric field is oriented, but with a constant distribution with
respect tox. As a function of time, the particles will undergo a diffusion process in the
y-direction from this initial state. The diffusion constant depends on the constant parameters
of the model and, in addition, on the kinetic energy of the moving particles. This kinetic
energy is directly influenced by the electric, but not by the magnetic field. Since no inelastic
processes are allowed in the model, the total energy,K + eE(y − y0) = K0, is conserved.
Thus, one-dimensional diffusion in they-direction is governed by

∂f (y, t)

∂t
= ∂

∂y
D1[K0 − eE(y − y0)]

∂f (y, t)

∂y
. (31)

Clearly, equations (30) and (31) are one and the same. Even though the physical argument
leading to (31) is direct and transparent, it is purely phenomenological and does not carry all
the information inherent in our systematic derivation of (30). However, this direct argument
serves as a welcome check on the systematic derivation.

From equation (30) a general result on the time development of the average kinetic
energy follows immediately. Multiply (30) byK, integrate, and do two partial integrations
on the right-hand side to get

d〈K〉
dt

= (eE)2
〈

dD1(K)

dK

〉
. (32)

The evolution in (32) is governed by thesquareof the weak electric field! This is directly
related to the fact that it occurs on theτ2 time scale. Since the diffusion ‘constant’
quite generally is a monotonically increasing function of the kinetic energy, equation (32)
demonstrates that its average will slowly increase with time.

4.2. The current density

The rotationally invariant part of the distribution function is constant on theτ0- andτ1-scales,
and becomes interesting only on theτ2-scale. The average current density,〈j〉 = n(−e)〈v〉,
on the other hand, has different and characteristic behaviour on all three scales.
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On theτ0-scale we start from an equilibrium distribution, i.e. from zero current density.
The details of the transientτ0-behaviour are, in general, hard to calculate systematically,
although progress should be possible close to the Grad limit. At this point we shall be
content with referring to (A10), which formally gives the current on the initial time scale.

We shall concentrate on theτ1- andτ2-scales here. From (A12), after reintroduction of
unscaled variables, one has

〈j〉 = n(−e)〈v〉 = ne2

[
ŷ

〈
dD1

dK

〉
− x̂

〈
dD2

dK

〉 ]
E . (33)

On theτ1-scale the distribution function is still the initial Maxwellian,f (0) ∼ exp(−βK).
Insertion into (33) and one partial integration gives

〈j〉eq = ne2β
[
ŷ〈D1〉eq − x̂〈D2〉eq

] E (34)

in agreement with the Nernst–Einstein relation (for linear transport!), which gives the
conductivity tensor asne2β times the diffusion tensor.

On theτ2-scale the results are formally similar in that (33) still holds true, butf (0) no
longer equals the initial Maxwellian, and must rather be determined from the solution of
the diffusion equation (30). That is, transport is no longer linear. However, as follows from
(33), with 〈· · ·〉eq replaced by the average with respect to the time dependent distribution
resulting from (30), nonlinear transport isalso governed by the time integral of the velocity
correlation functions!

5. Explicit results for low density

So far the results apply toany 2D Lorentz model, with straightforward generalizations
to 3D. In particular, no assumption was introduced restricting our results to low density.
However, it is instructive to specialize further to allow for more explicit results. What is
needed is expressions for the diffusion tensor in a 2D Lorentz model in a magnetic field.
At this point, then, we adopt results that, strictly speaking, only apply in the Grad limit.
For magnetotransport in 2D, the standard Boltzmann equation isnot correct. The basic
reason [2] for this is that there is a finite probability,P0 = exp(−2πRc/3), (with Rc the
cyclotron radius and3 the mean-free path) that an electron completes an entire cyclotron
orbit without scattering†. Thus, a fractionP0 of the electrons are ‘circling’, they never
collide. The remaining electrons are ‘wandering’, they collide (in the Grad limit, and in the
course of time) with infinitely many different scatterers. However, for the same reason that
circling eleyctrons exist, the wandering electrons can recollide many times with the same
scatterer before proceeding to the next. As a result, the correct ‘generalized Boltzmann
equation’ (GBE), has anon-Markovianstructure [2]:(
∂

∂t
+ ω

∂

∂φ

)
f G(φ, t) =

[t/T ]∑
s=0

P s0ν

∫ π

−π
dψ g(ψ)

[
f G(φ − (s + 1)ψ, t − sT )

− f G(φ − sψ, t − sT )
]
. (35)

Here νT = 2πRc/3, ν is the collision frequency,T = 2π/ω the cyclotron period, and
[t/T ] denotes the integral part oft/T . The functiong(ψ) = σ(ψ)/

∫
dψ σ(ψ) is the

dimensionless differential scattering cross section. The superscript G onf G refers to the

† Proof. The scatterers of radiusa are distributed randomly in the plane with densityn. For a cyclotron orbit
with radiusRc to be completed without scatterings, the areaAc = 4πaRc between radiiRc − a andRc + a must
be free of scattering centres. The probability that this is so isP0 = exp(−nAc) = exp(−2πRc/3). �
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subtlety that, fort > T , equation (35) applies to the wandering electrons only, not to the
circling ones, whereas fort < T (when only the first, standard Boltzmann, term on the
right-hand side survives) the distinction between circling and wandering electrons has not
yet been fully made, and the GBE describesall electrons. Thesth (non-Markovian!) term
on the right-hand side describes thesth recollision with the same scatterer. For an intuitive
derivation and further discussion of (35), we refer the reader to [2]. A controlled derivation
of (35) from (3) would clearly be desirable, but remains an open problem.

What is needed in the present context is the diffusion tensor that follows from the
solution of the initial value problem posed by equation (35), through the standard Kubo
formula (A6), (A11), (see [2]). Writing it as a complex quantity,D, with D1 = ReD and
D2 = ImD, we refer the reader to [2] for the following result, valid for hard disc scatterers†

D = 1

2
v2

[
P0

−iω
+ (1 − P0)τD(

√
P0)

1 − iωτD(
√
P0)

]

τD(p) = ν−1

[
1 − 1 − p2

2p2

(
1 − p2

2p
ln

1 + p

1 − p
− 1

)]−1

≡ ν−1h(p). (36)

The functionh(p) is monotonic‡ on the interval 06 p < 1, corresponding to the magnetic
field interval 06 B < ∞, and varies fromh(0) = 3

4 to h(1) = 1. Since3 = v/ν is an
energy-independent constant, we can introduce a dimensionless kinetic energy

k = (ν/ω)2 = 2K

m32ω2
(37)

and write equation (36) in the form

D(k) = ω32

2

√
k

[
e−2π

√
k

−i/
√
k

+ (1 − e−2π
√
k)h(e−π

√
k)

1 − ih(e−π
√
k)/

√
k

]
. (38)

5.1. The diffusion equation

First let us consider the diagonal partD1 which governs the time evolution on theτ2-scale,
through the diffusion equation (30):

D1 = ω32

2

(1 − e−2π
√
k)h(e−π

√
k)

√
k

1 + h2(e−π
√
k)/k

. (39)

Clearly, an analytic solution of the general initial problem posed by the diffusion
equation (30), with the complicated diffusion constantD1(K) given by (39) via relation (37),
is out of the question. Here we shall be content with commenting on the two extremes,
namely whenk � 1, and whenk � 1.

If the magnetic field is sufficiently strong so that in the initial equilibrium state,
ω � √

2/(mβ)3−1 (with β = (kBT )
−1, the inverse initial temperature), one hask � 1,

andD1 simplifies to

D1 ' πω32k2 = 4π

m232ω3
K2 (40)

† The first, purely imaginary, term is the contribution toD from circling electrons fort > T (not described by
(35)). It was erroneously overlooked in [2](a), but has been included in [2](b).
‡ The small-p expansion ofh(p) readsh(p) = (3/4)[1 + p2/5 + 12p4/175+ · · ·], and converges rapidly for
p 6 1.
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From equation (32) it then follows that, as long as the conditionk � 1 holds, the initial
growth of the mean kinetic energy is exponential:

〈K〉 ' β−1 exp

[
8π

ω

(E
B

)2
t

32

]
= β−1 exp

[
4

(
vdT

3

)2
t

T

]
(41)

with the drift velocityvd = E/B and the cyclotron periodT = 2π/ω.
As the average kinetic energy grows in time, the non-Markovian effects of the GBE

will decay together withe−π
√
k. Finally, the kinetic energy will be sufficiently large that

the cyclotron paths between collisions closely resemble straight lines. In this final stage,
the magnetic field has effectively been switched off,k � 1, and

D1 ' 3ω32

8

√
k = 3

√
23

8
√
m

√
K. (42)

Since for large kinetic energies the diffusion constant depends on the energy as a simple
power law, the asymptotic scaling solution to the diffusion equation can easily be found:

f (K, t) ' c

t2/3
exp[−K3/2/(αt)] (43)

whereα = 27
√

23(eE)2/(32
√
m) andc = 3m/[4πα2/30(2/3)] is a normalization constant.

The immmediate consequences are the well known asymptotic results [4, 5]〈K〉 ∼ E4/3t2/3

and〈v〉 ∼ E2/3t1/3.

5.2. The current density

The two components of the current density follow from (33). We first consider the
component parallel to the electric field, i.e.〈jy〉. In the case thatk � 1, equations (40) and
(41) give the initial exponential growth on theτ2-scale as

〈jy〉 ' E ne
2

β

8π

m232ω3
exp

[
4

(
vdT

3

)2
t

T

]
(44)

starting from the linear response value〈jy〉eq of (34) for the casek � 1. When sufficient
time has elapsed so that the opposite extreme,k � 1, has been reached, the diffusion
constantD1 ∼ √

K, so that dD1/dK ∼ (
√
K)−1. That is, we retrieve the familiar result

[4, 5] 〈jy〉 ∼ E1/3t−1/3.
Turning now to the component of the current density perpendicular to the electric field,

〈jx〉 = −ne2E〈dD2/dK〉, equation (38) gives

D2 = ω32

2

√
k

[√
ke−2π

√
k + (1 − e−2π

√
k)h2(e−π

√
k)/

√
k

1 + h2(e−π
√
k)/k

]
. (45)

We again consider the case when theB-field is sufficiently strong that, in the initial
equilibrium state,k � 1. Retaining the two lowest terms we find

D2 ' 1

eBK − 4
√

2πm3/2

33e4B4
K5/2 + · · · . (46)

The first term gives

〈jx〉 ' −neEB = −nevd (47)

as it should. The second term,∼ 〈K3/2〉, reduces the magnitude of the current, exponentially
fast at first.
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The decay of the transverse current, whenk � 1, is governed by

D2 ' ω32

2
g2(0)

[
1 − g2(0)

k
+ · · ·

]
= 9ω32

32

[
1 − 9mω232

32K
+ · · ·

]
. (48)

From this the final decay follows as

〈jx〉 ' −Ene2342−10m34ω3〈K−2〉 ∼ −B3E−5/3t−4/3. (49)

In this section we have only given the leading terms of the various asymptotic results.
In order to determine the corrections to the leading asymptotic terms, and their dependence
on, e.g., the initial temperature, connection problems analagous to those studied by Olaussen
and Hemmer [5] have to be solved.

6. Concluding remarks

This paper contains two general results on Lorentz models: The energy diffusion
equation (30), and the expression for the current density (33). No restriction to small
densities of scatterers was used in the derivation of these results. Technically, it is true
that the derivation was based on a specific model for the scatterers, namely hard discs.
However, this restriction can easily be lifted. Also, dimensionality plays no essential role
here, except for the distinction between motion parallel and transverse to the magnetic field.
We claim that our results for linear and nonlinear transport have, for the dissipationless
Lorentz model, the same status as the Kubo formulae for linear transport coefficients in the
general case.

This work demonstrates once again the efficiency of the systematic multiple time scale
method. In our case it provides a clean separation between three time scales governed by
different physics. As the explicit results of section 5 show, theτ2-scale can be subdivided
into two: the initial period in which subtle magnetic field effects are important, and the
final one dominated by electric field effects only.

It is interesting to note that, despite the fact that the dimensionless electric field was
assumed to be smaller than all the other parameters, it dominates after a sufficiently long
time has elapsed.

Nevertheless, the entire argument of the present paper rests on the electric field being
very small. Increasing the electric field, we expect to find a nonlinear crossover from physics
described (at low densities) by the generalized Boltzmann equation, to physics governed by
the Boltzmann equation proper. The quantitative understanding of this crossover remains
an open problem. In this connection one should also note that even the classical mechanics
of an electron and asingle scatterer in crossed electric and magnetic fields is a subtle
problem [11] in nonlinear mechanics. For a full discussion, the machinery of Kolmogorov–
Arnold–Moser theory (see, for example, [12]) is needed. A surprising qualitative result
is that, even in finite (but weak) electric fields, an electron can be trapped by a repulsive
scatterer [11]. In the present paper there is no trace of these subtle effects. The basic reason
for this is simple: in a weak electric field, we keep the leading term only. This implies
that basic to the calculation of the diffusion tensor (the ‘coefficient’ of the leading term)
is mechanics withno electric field present. In addition to this asymptotic fact, averaging
over initial conditions would tend to smear out subtle aspects of the nonlinear mechanics
in finite electric and magnetic fields.

Evidently, beyond the small-E asymptotics studied in this paper, a number of intriguing
questions remain to be clarified.
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Appendix. Formal solution to first order

Here we formally solve forf (1) on theτ0, τ1 andτ2 time scales. We first demonstrate that
a closed equation forf (0) on the τ2-scale follows. That is, we fill in the missing steps
between (26) and (27). We then turn to the current density and determine it formally on all
three time scales.

We begin by writing down the formal solution of (21), using (20) and the fact thatρ(0)

is independent ofτ0 and ofτ1

ρ(1)(e, 1, . . . , N; τ0, τ2, . . .)

= 1

A

∫ τ0

0
dτ ′ exp

{
−(τ0 − τ ′)

[
αu · ∂

∂x
+ ∂

∂φ
− 2αη

N∑
j=1

T (e, j)

]}

× Ê · û ∂f
(0)(u; τ2, . . .)

∂u

N∏
j=1

{
θ(|x − Xj | − 2η)

A− 4πη2

}
. (A1)

Apply to both sides of (A1) the operator lim∞
∫

dx
∫

d1· · · dN , introduce (temporarily)
the variableτ ′′ = τ0 − τ ′, and note thatÊ(∂f (0)/∂u)∏{· · ·} in (A1) is not affected by the
(τ0 − τ ′) operator. This gives

f (1)(u; τ0, τ1, . . .) = ∂f (0)

∂u
Ê ·

∫ τ0

0
dτ ′′ lim∞

1

A

∫
dx

∫
d1· · · dN

∏
{· · ·} exp

(−τ ′′[· · ·]) û
= ∂f (0)

∂u
Ê ·

∫ τ0

0
dτ ′′ lim∞

1

A

∫
dx

∫
d1· · · dN

∏
{· · ·}û(−τ ′′; x, 1, . . . , N)|û(0)=û

= ∂f (0)

∂u
Ê ·

∫ τ0

0
dτ ′〈û(−τ ′)〉û(0)=û. (A2)

Here 〈· · ·〉 denotes the average, in the thermodynamic limit, over the positions of the
scatterers and the electron.

A.1. The diffusion equation

We first use equation (A2) to derive a closed equation forf (0) on theτ2-scale by inserting
the resultingf (1), in the limit τ0 → ∞, into (26). Clearly, the angular average with repect
to û of the integral in (A2) vanishes, i.e.Q = 1 − P will project it onto itself. We can
therefore ignore this projector in (26). We then use the identity (we have chosenÊ = ŷ)

Ê · ∂

∂u
= sinφ

∂

∂u
+ cosφ

u

∂

∂φ
(A3)

to write

∂f (0)

∂τ2
= lim

τ0→∞P
(

Ê · ∂

∂u
Qf (1)

)
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= P

{∫ ∞

0
dτ ′

[
∂

∂u

1

2π

∫ π

−π
dφ 〈sinφ sinφ(−τ ′)〉φ(0)=φ

+ 1

u

1

2π

∫ π

−π
dφ 〈cosφ

∂

∂φ
sinφ(−τ ′)〉φ(0)=φ

]
∂f (0)

∂u

}
. (A4)

Sinceφ and 〈φ(−τ ′)〉φ(0)=φ are proportional to one another, the second average is over a
product of cosines and, by symmetry, equals the average over the product of sines. We can
therefore add them and divide by 2 to get1

2〈cos[φ − φ(−τ ′)]〉φ(0)=φ . In other words, we
have deduced that

∂f (0)

∂τ2
= P

{(
∂

∂u
+ 1

u

)
1

2

∫ ∞

0
dτ ′ 〈û · û(−τ ′)〉û(0)=û ∂f

(0)

∂u

}
. (A5)

Clearly {· · ·} in (A5) is already rotationally invariant, soP projects it onto itself. Finally,
we note that the diagonal part of the diffusion tensor, in physical variables, reads

D1 = 1
2

∫ ∞

0
dt 〈v(t) · v(0)〉 = v2

0u
2

ω

1

2

∫ ∞

0
dτ ′ 〈û · û(−τ ′)〉 ≡ v2

0

ω
D1 (A6)

where time translation invariance of the equilibrium average was used. In terms ofD1/u
2,

equation (A5) becomes

∂f (0)

∂τ2
=

(
∂

∂u
+ 1

u

) D1

u2

∂f (0)

∂u
= 1

u

∂

∂u
D1

1

u

∂

∂u
f (0). (A7)

Introducing the dimensionless kinetic energyK = 1
2u

2, we can finally write

∂f (0)

∂τ2
= ∂

∂KD1(K)∂f
(0)

∂K . (A8)

No assumption on the density of scatterers were used in the above derivation. In fact, it
can be read as containing a (complicated) rederivation of the Einstein/Kubo formula for the
energy dependent diffusion ‘constant’.

A.2. The current density

Next we use equation (A2) to calculate an expression for the average velocity, i.e. the
current, on all time scales. The mean velocity is given by

〈v〉 = v0〈u〉 = v0

∫
du u

(
f (0) + εf (1) + · · ·) = v0ε

∫
du uf (1) (A9)

when contributions of higher order thanε are neglected. Splittingu in Ê-, i.e. ŷ- and x̂-,
components, equation (A2) can be used to rewrite (A9) as

〈v〉 = v0ε

∫
du u−1

(
ŷ

∫ τ0

0
dτ 〈uy(−τ)uy(0)〉 + x̂

∫ τ0

0
dτ 〈uy(−τ)ux(0)〉

)
∂f (0)

∂u
. (A10)

In order to determine theτ0-dependence of〈v〉, equation (A10) shows that the solution of
the initial value problem of the corresponding kinetic theory is needed. In the Grad limit,
the appropriate kinetic equation is the generalized Boltzmann equation [2]. We do not pause
to give details here.
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On theτ1- andτ2-scales, we need the limiting value of (A10) asτ0 → ∞. The two time
integrals appearing in (A10) are closely related to the (rescaled) diagonal and off-diagonal
terms, respectively, of the diffusion tensor∫ ∞

0
dτ 〈uy(−τ)uy(0)〉 = D1 = ωD1

v2
0

∫ ∞

0
dτ 〈uy(−τ)ux(0)〉 = −D2 = −ωD2

v2
0

.

(A11)

HereD1 = Dyy = Dxx andD2 = Dyx = −Dxy . It is again convenient to introduce the
dimensionless kinetic energyK = 1

2u
2. Note that the normalization

∫
du f (u) = 1 implies

2π
∫ ∞

0 dK f (K) = 1 in our two-dimensional case. Using this and (A11) in (A10) gives, by
partial integration,

〈v〉 = v0ε

[
ŷ2π

∫
dK D1(K)∂f

(0)

∂K − x̂2π
∫

dK D2(K)∂f
(0)

∂K
]

= −ŷv0ε

〈
dD1

dK
〉
+ x̂v0ε

〈
dD2

dK
〉
. (A12)

In (A12) 〈· · ·〉 implies averaging with respect tof (0).

References

[1] Lorentz H A 1905Arch. Néerl. 10 336
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